If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-23y-9=0
a = 6; b = -23; c = -9;
Δ = b2-4ac
Δ = -232-4·6·(-9)
Δ = 745
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{745}}{2*6}=\frac{23-\sqrt{745}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{745}}{2*6}=\frac{23+\sqrt{745}}{12} $
| 2/7x+6/7=6/7 | | 18x+(-14)=6x=36 | | -12=2/7x | | 3x+(-2)=6x=7 | | 18x-2+76=36x+2,x | | 5x+(-15)=-9 | | x-3/2=3/8 | | 2x^2+-6x+-9=0 | | 10x+(-6)=-5 | | -9=z-8 | | v-4.48=9.64 | | 4/(x+1)=x/5 | | y-11/19=-2/19 | | 16x+(-5)=-3 | | x/4+x/2=150 | | y+7.4=9.86 | | 6^x-6=144(2^x) | | 0=47+5x | | x-4/3=5/2 | | 4x+1(8)=28 | | 4x+13=-5 | | 6x+4=4(x+5) | | (5/x)+(3/x)=24 | | 19/5=n/16 | | 5(90x+180)-270=12(675x-150) | | 18c-4c-5c-7c=20 | | x+3+3x+4x+1=180 | | 2^3x-1=2^2x+7 | | 2x-3/3=x/2 | | 5x-7=-5x-107 | | (x+23)^2+x^2=1369 | | x^2+46x=420 |